DroidNative: A Greedy-Constructed Large-Scale
Indexing for Android Native Libraries

Shiyang Zhang*, Chengwei Liut, Sen Chen'®, Lyuye Zhang?, Yang Liu!
*College of Intelligence and Computing, Tianjin University, China
TCollege of Cryptology and Cyber Science, Nankai University, China
J:College of Computing and Data Science, Nanyang Technological University, Singapore

Abstract—Native libraries are widely used in Android for per-
formance optimization, but their integration also poses security
risks. Although existing research works have investigated the
adoption, management, and ecosystem evolution of third-party
libraries (TPLs) in Android, studies specific to Android native
libraries are still rare, which makes the potential threats of
native libraries in Android less concerned. The biggest barrier
is that, Android native libraries are usually provided by various
suppliers in different ways and sources, leading to the lack of
a comprehensive registry that indexes commonly used native
libraries for further investigations.

To this end, by following a greedy strategy to identify pos-
sible repository sources and collect Android native libraries,
we constructed the first comprehensive native library database
DroidNative for Android, with over 60K libraries and 292K
versions well retained. Our experiments proved its completeness
that 85.1% of binaries in real-world APPs can be successfully
traced in DroidNative, with 10.1% of the rest suspicious to
be not third-party native libraries. Moreover, DroidNative is
also evaluated to be useful regarding improving existing SCA
detection (i.e., LIbRARIAN) by outperforming existing state of
the art tools with at least 78.4% recognition rate improvement.

Index Terms—Android Native Library, SCA

I. INTRODUCTION

Native libraries are widely used in Android development
to enhance performance. A study [l] analyzing over 1.2
million Android applications found that approximately 40%
of them incorporated native code, underscoring its widespread
adoption. However, the integration of native libraries also
introduces challenges, such as security vulnerabilities [2].

Many existing research works [3]-[5] have examined the
adoption, identification, and ecosystem analysis for third party
libraries in the Android ecosystem. However, although they
incorporated different solutions, such as static analysis and
machine learning approaches, all of these existing works are
focused on TPLs that are published and indexed in package
managers, while none of them specifically investigated the
supply chain of native libraries in Android Apps.

There are some major challenges that block the analysis of
Android native libraries like other TPLs. 1) Lack of central
indexes. Native libraries are scattered across multiple sources,
with no standardized repository or indexing services. 2) Lack
of effective identification techniques. Unlike Java/Kotlin
dependencies, native libraries are often distributed as precom-
piled binaries with stripped symbols, obfuscation, and custom

§ Sen Chen is the corresponding author (senchen@nankai.edu.cn).

modifications, making it difficult to identically distinguish
binaries to their libraries and versions for dataset construction.
Therefore, in this paper, we proposed a greedy approach to
construct the first comprehensive dataset for Android native
library detection. Specifically, for Challenge 1, by analyzing
existing ground truths of Android native library importing,
we summarized three major types of Android native libraries:
Directly-Included, Self-Compiled, and Remotely-Integrated
Libraries, and collected as many potential repository sources
as possible. For Challenge 2, when validating the identities
of binaries found in APKs, we combined the proofs of iden-
tical mappings from both corresponding tools and similarity
confirmation by code clone analysis, ensuring all identified
importing ways are well explained and precisely verified.
After collecting all binaries from identified sources, we
constructed a comprehensive dataset for Android native li-
brary called DroidNative, with 60,287 libraries and 292,797
versions, to facilitate downstream tasks. Our experiments
showed that, against a well-constructed real-world testset of
mainstream apps, DroidNative has covered at least 85.1%
of all binaries in these Apps, with 10.1% suspicious to be
self-compiled libraries. Moreover, by adopting DroidN ative
to LibRARIAN, it significantly improved the performance
of LibRARIAN by 78.4%, which also outperforms the
SOTA commercial tool BinaryAl by 82.9% on identifiable
Native libraries. These results proved that the constructed
DroidNative can be a comprehensive indexing database for
Android native libraries and benefit downstream tasks. We
have open sourced the DroidNative for public profit [[6].

II. APPROACH

In this section, we introduce a greedy approach to 1)
studying existing native library importing mechanisms, 2)
mining native library sources, and 3) collecting native libraries,
with the aim of constructing a comprehensive Android native
library dataset DroidNative, as presented in Figure

A. Study on Android Native Library Importing

We first investigate the possible ways in which Android
native libraries can be imported into user projects, by inspect-
ing the mapping of source codes and APKs that are well
maintained in the F-Droid database.

Data Preparation. F-Droid provides Android APKs along
with their hosted source code, which strongly supports the

Directly-Tncluded |
Libraries '

|

|

.
!
I
I
I
Self-Compiled |
Libraries »
I I
I I
I
\

Source Code Remotely- |
\ Integrated Libraries]
-

A. Importing Study B. Source Identification

Fig. 1.

subsequent Android native library source analysis. To this end,
we first collect APKSs that have integrated at least one Android
native library, resulting in 2,979 APKs selected out of all
10,404 APKs that are available on F-Droid. After that, we
further filter out APKs that are with valid source code links,
resulting in 2,571 APKSs, containing 17,165 Android native
libraries, as the final dataset for this study.

Mapping Analysis. To exhaustively identify all possible ways
to import Android native libraries, we randomly select 100
APKs for each of the first three authors to label the cor-
responding import approaches. After cross-validation among
three authors, we identified three major types of imported
Android native libraries that are packed into user APKs.

1) Directly-Included Libraries. The binaries of Android
native libraries are directly included in the source code repos-
itories under certain folders, such as libs/ or jniLibs/.

2) Self-Compiled Libraries. The source code or links to
source code are placed in the source code repositories, and
they are (downloaded and) compiled to corresponding binaries
using Android Native Development Kit (NDK) or CMake
when building Android Apps.

3) Remotely-Integrated Libraries. The Android native li-
braries are downloaded by building tools like Gradle from
remote repositories and packed into the APK files when
building Android Apps.

B. Source Identification for Android Native Libraries

Next, based on the importing approaches we identified in
the study, we design an automated tool SourceFinder to
parse each APK file and its corresponding source code project
and identify possible sources for the 17,165 Android native
libraries. Specifically, for each Android APK, SourceFinder
first decompresses the APK file and locate all binary file (i.e.,
.so files). Then, SourceFinder traverses its source code and
search evidences for Android native library importing.

1) For Directly-Included Libraries: During the traversal,
considering that some directories, such as libs/ and jniLibs/,
may contain multiple binary files of the same library for differ-
ent system architecture support, SourceFinder records these
names and their locations only once for further mappings.

2) For Self-Compiled Libraries: Source Finder identifies all
configuration files that are possible to download source code
from external repositories, such as shell scripts that have exe-
cuted git command. Apart from this, SourceFinder also goes
through Android.mk (for Android NDK) and CMakeLists.txt
(for CMake) and identify the corresponding configurations.
To this end, SourceFinder collects the configured names and

/ Maven |
\-,ubuntu debian !

») GitHub & GitLab » u *
‘ 2 Google Open Source | -
\ 4

N Repos tyl ************

\
|
|
|

Android Native
Library Index

C. Native Library Collection Experiments

Overview of the construction of DroidN ative

locations of corresponding source code throughtout the source
code projects as records for further mappings.

3) For Remotely-Integrated Libraries: SourceFinder iden-
tifies two folds of possible configurations in source code
repositories. For Android native libraries that are introduced
by build tools like Gradle, SourceFinder inspects specific
configuration file, such as build.gradle to identify the imported
packages. Then, considering that after Gradle 7.0, Version
Catelogs are introduced, SourceFinder also identified the
libs.version.toml file to trace the package names declared
in build.gradle back to their original GAVs. After that, the
identified package names and repository sources are all logged
by SourceFinder for further mappings.

4) Source code & Binary Mapping: After collecting all these
clues in source code project that can indicate the integration
of Android native libraries, SourceFinder then maps these
clues back to the binary files (i.e., .so files) in APKs to
ensure that the source of all binary files are properly identified.
1) For Directly-Included Libraries, SourceFinder directly
matches them back to binaries in APK by hash. 2) For Self-
Compiled Libraries, after collecting all source code from
external links, SourceF'inder maps the source code locations
to binary files by the defined names in configuration files. 3)
For Remotely-Integrated Libraries, SourceFinder downloads
the corresponding packages from remote repositories, and
decompresses them to retrieve the binary files inside, then
compare with those binaries identified in APKs by names
and hashes. After this, we can obtain the detailed mappings
between binary files in APKs and the corresponding source
code locations or remote addresses.

Results. We applied our tool to the 2,571 APKs. The experi-
mental results show that, in total, 15,666 out of these 17,165
binaries in APKs (91.3%) are successfully traced to their
sources with confirmed evidences. In detail, 96 (0.6%), 6,344
(37.0%), and 9,226 (53.7%) of them are directly-included, self-
compiled, and remotely-integrated libraries, respectively.

For self-compiled libraries, although some of these libraries
are from external source code repositories, and integrated after
local compilation, it does not mean we can directly collect the
corresponding binary files from these repositories. Moreover,
considering that some Android native libraries are directly
kept in source code repositories, we add these source code
repositories as possible sources for further collection, such as
GitHub, GitLab, and Gitdab.

For remotely-integrated libraries, we examined the distri-
bution of their sources (Figure [2), covering 9 repositories.
Google Maven and Maven Central are the top sources of
Android native libraries. Jcenter and Bintray have since been

1615 1217
12.85% 8%
o18
7.30% 19 4
758 0.15% 0.03%

6.03%
1
9
7995 44 0.01%

63.60% 0.35%

Maven Central Google Maven
Operating System's Repo Jcenter
Bintray CommonsWare

Jitpack
Sonatype
Clojars

Fig. 2. Date Source Distribution

TABLE I
ANDROID NATIVE LIBRARIES DATASET DISTRIBUTION

Data Source | #Lib. #Ver. | Data Source | #Lib. #Ver.
Debian 32,261 120,993 Google Maven 69 4,872
Ubuntu 8,040 48,373 Google Source 617 2,480

Maven Central 18,358 112,849 | Git Repositories 942 3,230

shut down and merged into Maven Central [[7]. OS repositories
like Ubuntu and Debian also contribute significantly. Jitpack,
though not a central repository, is commonly used to integrate
GitHub projects. Sonatype serves as an alternative to Maven.
Other sources, include Bintray, CommonsWare, and Clojars,
rarely provide common Android native libraries.

Based on these results, we further summarize the collected
sources as comprehensively as possible. After filtering out
duplicate sources and closing service sources, we collected
a set of sources that maintain the mainstream Android na-
tive libraries, including Git-repositories (i.e., GitHub, GitLab,
Gitdab, Google Source, etc.), OS repositories (i.e., Ubuntu
and Debian, etc.), Maven-alike TPL repositories (i.e., Maven
Central and Google Maven, etc.).

C. Native Library Collection

After identifying these possible sources, we collect these
Android native libraries correspondingly.
e OS Package Repositories: We mainly collect Android
native libraries from Ubuntu and Debian repositories. We
first recursively download all .deb files, then decompress
and extract the native libraries by BinWalk. We further filter
relevant files and record metadata, including package name,
version, compiler architecture, and release time. This approach
resulted in the collection of 48,373 Android native libraries
from Ubuntu and 120,993 from Debian.
o TPL Repositories: This type of data sources mainly include
Maven Central and Google Maven. We recursively download,
extract, and filter native libraries from .aar packages and
recording relevant metadata such as package name, version,
and release timestamp. This process resulted in the collection
of 112,849 Android native libraries from Maven Central and
4,872 from Google Maven.
e Source Code Repositories: To collect Android native
libraries from Google Source, GitHub, GitLab, and other Git-
based platforms, we used automated downloads, crawlers, and
filtering, ultimately collecting 2,480 libraries from Google
Source and 3,230 from Git repositories.

Overall, we collect a total of 60,287 native libraries with
292,797 versions from various sources and build a complete

dataset DroidNative of native libraries along with their data
sources. The specific component and version distribution for
each data source are presented in Table

III. EXPERIMENTS

In this section, we evaluate the completeness and appli-
cability by answering two research questions: 1) Complete-
ness. How complete is DrotdNative in terms of Android
native libraries? 2) SCA Enhancement. To what extent can
DroidNative enhance existing SOTA SCA tools in terms of
identifying Android native libraries?

A. Completeness of DroidNative

Given the cutting edge performance of LibRARIAN, we use
it to verify the completeness of DroidNative. Considering the
popularity and timeliness of the projects, we extracted Android
native libraries from all apks published on the top-list of 24
categories on APKCombo within the past five years. In total,
we downloaded 14,734 APKs from 477 Android projects and
extracted 150,914 binaries (i.e., .so files) from them. To avoid
the rarely used instance and focus on mainstream libraries, we
retained only those found in more than 10 Android projects,
specifically totaling 63,008 binaries.

Result: Among these 63,008 binaries, features were success-
fully extracted from 61,325 of them by LibRARIAN, denoted
as Real-world dataset. Therefore, we compared these bina-
ries against Droid N ative by LibRARIAN. The experimental
results showed that 52,194 binaries, out of 61,325 (85.1%)
can be successfully mapped to Droid N ative_F, which means
these binaries are well covered in our DroidNative dataset.

Subsequently, we conducted an in-depth analysis of all
instances that fail to achieve successful matching:

e Self-Compiled Android Native Libraries. Inspired by
the Self-Compiled libraries, we compared the hashes and
filenames of untraceable Android native libraries with those
of self-compiled ones. Out of the 9,131 untraceable Android
native libraries, 3,039 exhibited identical filenames and SHA-
256 hashes, while 3,349 shared identical filenames but differed
in their SHA-256 hashes, indicating in total 6,388 (10.1%)
libraries were likely introduced through self-compilation.

e Incomplete Version Collection Due to Data Source
Updates. In certain instances, identification results of Android
native libraries with the same filename from different versions
of the same Android project were inconsistent. Given that An-
droid apps usually show version continuity in using TPLs, we
hypothesized these failures may stem from incomplete version
collection rather than total lack of data source. This data loss
may result from data source updates. Of the remaining 2,743
failed cases, 446 showed the above phenomenon.

B. Enhancement for SOTA Tools

Given the large coverage of DroidNative, we further
assess the extent to which Droid N ative enhances the perfor-
mance of existing Android native library identification tools
(LibRARIAN with DroidNative) with two selected base-
lines, the SOTA model (LibRARIAN with its public dataset)
and leading commercial tool (BinaryAl).

To compare with Baseline 1, we applied the pre-constructed
Real-world dataset. To compare with Baseline 2, due to the
upload file size and API limitations, we randomly selected
1,000 Android native libraries from the Real-world dataset.
LibRARIAN: The experimental results demonstrated an in-
crease from 4,121 libraries (6.7%) to 52,194 libraries (85.1%)
beyond LibRARIAN’s original dataset, and all libraries iden-
tified by LibRARIAN can be successfully identified by Li-
bRARIAN with DroidNative, indicating that DroidN ative
can significantly enhances the capability of LibRARIAN due
to the larger volume and a broader range of data sources.
BinaryAI: According to our manual inspecting, BinaryAl
can successfully identified 151 official links corresponding to
the 1000 native libraries. In comparison, LibRARIAN with
DroidNative can successfully identify 980 of them with
detailed original sources, achieving a traceability success rate
improvement from 15.1% to 98.0%. Moreover, LibRARIAN
with DroidNative successfully identified 150 out of the 151
succeed cases of BinaryAl, and even for the missed one,
LibRARIAN actually has identified its source but this result
is rejected due to its own threshold of required similarity.

IV. LIMITATIONS AND THREATS TO VALIDITY

1) Sample Selection: We analyzed APKs from popular
apps on APKCombo(2019-2024), which may overlook older
or less popular apps. However, since popular apps tend to
be well-maintained and widely used, they provide a represen-
tative view of real-world dependency management. 2) Data
Collection Constraints: GitHub’s API restrictions limited our
ability to retrieve all Android native libraries. To mitigate
this, we included libraries referenced in build.gradle files,
ensuring that our dataset still captures the most commonly
used dependencies.

V. RELATED WORK

Third-party libraries are a cornerstone of Android applica-
tion development, prompting extensive research on the identi-
fication of third-party library versions. In early time, machine-
learning based approaches [8]], [9] are widely adopted. After
that, clustering technique [10] are introduced. Subsequently,
characteristics of code syntax and semantics [4]], [5]] are also
used to enhance performance. However, the primary focus of
these works remain on JVM-based libraries, with insufficient
attention to Android native libraries. To the best of our knowl-
edge, there are two papers most related to our scope. Liu et
al. [[11] is the only existing work that systematically discussed
the major building process of Android Apps, while they
focused more on the practices of configurations of mainstream
building tools. Another work is conducted by Almanee et
al. [12], who introduced LibRARIAN, specifically for identi-
fying versions of native libraries. It employs bin?sim, a novel
similarity metric that leverages features extracted from library
metadata and identifies strings in read-only sections to enable
similarity-based matching. However, their feature dataset was
constructed using only 200 Android apps containing 7.2K
binaries, which limits its real-world applicability.

VI. CONCLUSION

In this paper, we lay the foundation for studying native
libraries in Android apps by constructing the first compre-
hensive indexing dataset, DroidNative, through the incor-
poration of a greedy strategy for searching, identification, and
collection. DroidN ative is proved to achieve a high coverage
(85.1%) of binaries in real-world apps and boosts SOTA SCA
detection with at least a 78.4% improvement on detection rate.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural
Science Foundation of China (No. 62472309) and the Na-
tional Research Foundation Singapore and the Cyber Security
Agency under the National Cybersecurity R&D Programme
(NCRP25-P04-TAICeN). Any opinions, findings and conclu-
sions, or recommendations expressed in these materials are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore, Singapore.

REFERENCES

[1] M. Polino et al., “Going native: Using a large-scale analysis of Android
Apps to create a practical native-code sandboxing policy,” in The
Network and Distributed System Security Symposium 2016, 2016, pp.
1-15.

[2] F. Zhang, L. Fan, S. Chen, M. Cai, S. Xu, and L. Zhao, “Does the
vulnerability threaten our projects? automated vulnerable API detection
for third-party libraries,” IEEE Transactions on Software Engineering,
2024.

[3] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for Android ap-
plications: Are we there yet?” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp.
919-930.

[4] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu,
“ATVHUNTER: Reliable version detection of third-party libraries for
vulnerability identification in Android applications,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1EEE,
2021, pp. 1695-1707.

[5] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “{LibScan}:
Towards more precise {Third-Party} library identification for Android
applications,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 3385-3402.

[6] “Android native library,” [Online; accessed 2025-03-14]. [Online].
Auvailable: https://sites.google.com/view/hi-library.

[7] adia, “Jcenter sunset on august 15th, 2024 — jfrog,” 7 2024,
[Online; accessed 2025-03-14]. [Online]. Available: https://jfrog.com/
blog/jcenter-sunset/

[8] A. Narayanan, L. Chen, and C. K. Chan, “AdDetect: Automated de-
tection of Android ad libraries using semantic analysis,” in 2014 IEEE
Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP). 1EEE, 2014, pp. 1-6.

[9]1 B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-

escalation for ad libraries in mobile Apps,” in Proceedings of the 13th

annual international conference on mobile systems, applications, and

services, 2015, pp. 89-103.

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection

in Android and its security applications,” in Proceedings of the 2016

ACM SIGSAC conference on computer and communications security,

2016, pp. 356-367.

P. Liu, L. Li, K. Liu, S. MclIntosh, and J. Grundy, “Understanding

the quality and evolution of Android App build systems,” Journal of

Software: Evolution and Process, vol. 36, no. 5, p. €2602, 2024.

S. Almanee, A. Unal, M. Payer, and J. Garcia, “Too quiet in the

library: An empirical study of security updates in Android Apps’ native

code,” in 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE). 1EEE, 2021, pp. 1347-1359.

[10]

(11]

[12]

https://sites.google.com/view/hi-library
https://jfrog.com/blog/jcenter-sunset/
https://jfrog.com/blog/jcenter-sunset/

	Introduction
	Approach
	Study on Android Native Library Importing
	Source Identification for Android Native Libraries
	Native Library Collection

	Experiments
	Completeness of DroidNative
	Enhancement for SOTA Tools

	Limitations and Threats to Validity
	Related Work
	Conclusion
	References

